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We adopt adaptive syndrome measurements [6] for flags. For a sequence of full syndromes (syndrome 
history) of length n, the difference vector δ is a binary string of length n-1, with δi = 0 if s⃗i = s⃗i+1, and 
1 otherwise. Suppose ηi are zero substrings of length γiand νi is the number of flag bits above 1 in flag 
syndromes between |̇ and |̈, N11 is the number of non-overlapping 11 substrings in δ and:

δi = η11 … 1ηi−1|̇1ηi1|̈ηi+11 … 1ηc, with

Quantum Error Correcting codes can handle the 
code capacity noise model – i.e. memory errors 
between rounds. However, syndrome measurements 
can be faulty in realistic settings.  

Time decoding can handle untrustworthy syndrome 
measurements by repetition, e.g. using Shor’s method 
[2] or our special protocols [1].  

Faults on ancillas can propagate back to the data qubits as 
high-weight errors. Flag qubits [3] can distinguish these 
concerning errors from low-weight ones even if they have the 
same syndrome with the right space decoder. 

To be able to distinguish the accepted syndrome 𝒔𝒔(𝑬𝑬) of the combined data error E, we concatenate 
it with the cumulative flag vector  𝒇𝒇 =  ∑𝒇𝒇(𝒊𝒊) - the combined object is the full syndrome, which is 
used by the space decoder to generate the recovery operator.  

In this work [1], we separate space decoding and efficient time decoding.

NOISE MODEL
• Circuit-level depolarizing error model parametrized by a single physical error parameter p

• after each 1-qubit (2-qubit) gate 1-qubit (2-qubit) depolarizing channel of strength p, which leaves 
the state unchanged with probability 1-p, and with probability p/3 (p/15) applies one of the 
possible 1-qubit (2-qubit) Pauli operators X, Z, Y( 𝐼𝐼,𝑋𝑋,𝑍𝑍,𝑌𝑌 ⨂ 2\ 𝐼𝐼⨂𝐼𝐼 ).

• With probability p flip the result of a measurement operation and after a reset operation flip the 
state to the orthogonal state

• Note, that exploring and combating the effect of idling noise is left for future work. 

The Fault Count Assumption (FCA): there are at most t faults in the syndrome history – this fails with 
probability pt+1. Using the FCA, stopping conditions ensure with probability pt+1 that the accepted 
zero substring is trustworthy. 
• Shor’s: stop when γc = t, accept ηc
• One-tailed adaptive: stop if either γ𝐜𝐜 ≥ 1 and max(αc, μc)+γc + ωc ≥ t, accept ηc OR N11 ≥ t

• Two-tailed adaptive: stop if either max(αj, μj)+γj + υ′ + max(βj,ωj) ≥ t, accept ηi OR N11 ≥ t

• Two-tailed separate XZ/ZX: Two-tailed adaptive on X-syndromes, estimate tx, then Two-tailed 
adaptive on Z-syndromes  with fault count target t − tx (for ZX swap X and Z)
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SPACE DECODING
We use a lookup table (LUT)-based distance verification and decoder for an [[n, k, d]] self-dual CSS 
code under depolarizing noise models.
               
                    

Canonical Recovery Operators (CRO): All Pauli operator 𝑃𝑃 ∈ 𝒫𝒫𝑛𝑛 can be decomposed as pure errors 
(E), a stabilizer (S) and a logical operator 𝐿𝐿 ∈ 𝒫𝒫𝑘𝑘 , 𝑃𝑃 = 𝐸𝐸𝐸𝐸𝐸𝐸. We fix a CRO (pure error) for each syndrome 
bit. 
The logical class of a syndrome tells what logical correction is required after the application of the 
CROs based on the syndrome bit. The LUT is built from all possible combinations up to weight-t of 
single-qubit/location errors. This gives us a code capacity / phenomenological level most-likely-error 
decoder. 
E.g., for the [[7,1,3]] code: 

The full syndrome (with flags) allows a similar approach for circuit-level decoding: the fault code 
maps a fault combination to a full syndrome analogously to how the error correcting code maps a 
combination of single-qubit errors to generator bits. 

Meet-in-the-middle optimization to increase the chance of decoding fault combinations with 
syndromes that are not in the lookup table. 

Methods: Direct sampling using Cirq[7], 
Stim/Sinter[8], Python/C++, Slurm. Number of 
samples per data point vary from a a minimum of 
105 to a maximum of 109.  Code and data will be 
open-sourced eventually, available for request.
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Conclusions: Both space and time decoding optimizations can have a significant effect on logical 
error rates. Near-term architectures might find LUT-based methods attractive, but the table is not 
scalable. Future work should explore scalable decoding of the fault code and the effect of idling noise.
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↓ pure data faults

↑ Flag ancilla faults

↓ Syndrome ancilla faults

← Generator bits

← Flag bits

← Logical class

1 qubit errors

recoveries

J=(11…1) for parity

Naïve LUT syndrome → recovery operator 2(n-k)+2n=4n-2k bits/entry    100%

Use logical class syndrome → logical class 2(n-k)+2k=2n bits/entry       ~50%
Self-dual CSS code Same LUT for X and Z stabilizers n-k+k=n  bits/entry        ~25%

The 6.6.6 color code of distance 3, 5, 7, 9 
were tested. These are self-dual CSS codes, 
thus benefit from all our optimizations.  

The “threshold effect”

MIM improves performance

Adaptive time decoding improves performance

[[61,1,9]] pseudo-threshold summary

𝛿𝛿𝑖𝑖
# of flag bits

1 2 3 4 5 6 7 8 9 10rounds
1 0 2 0|0 2 1| 0 0 1

Example

1 1 0|̇1 0 0 1|̈0 1
αj = βj = 1, γj = 2,μj = 3, νj = ωj = 1

     N11 = 1
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An example case where MIM succeeds in decoding An example case where MIM decoding leads to a logical error

Time decoder No MIM MIM
Shor’s 1.34E-04 2.79E-04

One-tailed adaptive 2.11E-04 3.91E-04
Two-tailed adaptive 3.38E-04 6.30E-04

Two-tailed adaptive XZ 6.09E-04
Two-tailed adaptive ZX 1.43E-03
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