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FLAG FAULT-TOLERANT ERROR CORRECTION TIME DECODER OPTIMIZATIONS

A3 We optimize adaptive syndrome measurements [6] to achieve increased pseudo-thresholds. For a
Quantum Error Correcting codes can handle the H =

code capacity noise model — i.e. memory errors L= s o . .
betwee:rouﬁds However, syndrome mZasurements 000 length n-17, with §; = 0 if 5; = S;,1, and 1 otherwise. Suppose n; are zero substrings of length y;and v’

can be faulty in realistic settings I E=(1 000000 is the number of flag bits above 1 in flag syndromes between | and |, and

sequence of full syndromes (syndrome history) of length n, the difference vector §is a binary string of

. . o . 8 =M1 1011101411 ... 11, with
In this work [1], we separate space decoding and efficient time decoding. (= T 1,' NillMies o e W

f

1\ 1\ (1) /1) /1) min. # of faults a B
Time decoding can handle untrustworthy syndrome HIRIEEE X # of flag bits I W
measurements by repetition, e.g. using Shor’s method ol [1] o] |0 | T R XYy The Fault Count Assumption (FCA): there are at most t faults in the syndrome history. The FCA fails
[2] or our special protocols [1]. \8} \8) \8) \8} \é/ with probability pt*1. Using the FCA, these stopping conditions ensure with probability pt*! that the
0 0 0 1 1

accepted zero substring is trustworthy:

Faults on ancillas can propagate back to the data qubits as
high-weight errors. Flag qubits [3] can distinguish these
concerning errors from low-weight ones even if they have the
same syndrome with the right space decoder.

 Shor’s: stop when y, = t, accept n,, trade-off: none
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* 1TA: One-tailed adaptive: a.) y. = 0, stop when a+y, = t, accept n. b.) y. = 1, trade-off: none

gyl « 2TA: Two-tailed adaptive: stop when max(a, u)+y; + v’ + max(B, w) = t, accept n; - trade-off: not
0) b S X—A- obvious how to use the left-over flag information in fault-tolerant computation, only in storage
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To be able to distinguish the accepted syndrome s(E) of the combined data error E, we concatenate it with * Two-tailed separate XZ/ZX: 2TA on X-syndromes, estimate t,, then 2TA on Z-syndromes with fault
the cumulative flag vector f = ¥ f® - the combined object is the full syndrome, which is used by the count target t — t, (for ZX swap X and Z) - trade-off: doesn't scale well for larger codes

space decoder to generate the recovery operator. For numerical upper bounds, we use Maxwell’s demon decoder. Suppose the omniscient Maxwell’s
demon tells us the exact number of faults per round:

*  M1TA: stop when last round had 0 faults and accept that as the syndrome

PLANAR D'STANCE 9 COLOR CODES « M1TA XZ/ZX: M1TA on X-syndromes, then M1TA on Z-syndromes

Codes that have a planar layout can be

advantageous for certain architectures. We report a N U M ER ' CAL R ESU LTS

planar layout for the Level 2 concatenated Steane

code [1] and we compare its performance to the well L0 The Effect of Meet-In-The-Middle One-tailed adaptive time decoders
studied triangular color code (previously compared " -
in code capacity error model in [4]). — pr = 2p/3
—*— py, =5.93E-04 [[7,1,3]] Shorgs
1072 A .
[[49,1,9]] Level 2 Steane code [[61,1,9]] triangular color code = |
o
2 1074 | _ - : _
o] " ¢ T
8 - + % /"’-/
DISTINGUISHABILITY s r 1 /
S ' 7
Definition 1 (following [5]): Let the fault set F; denote the set of all possible fault combinations ® 1976 14 7 -
arising from up to t faults and let S be the stabilizer group of the underlying QEC code. We say that 3 R, ' '
F; is distinguishable if for any pair of fault combination A,, A, in F, ' £ |7
. > > > AR A —+— pg, =1.79E-04 [[49,1,9]] Shor’s, no MIM 7 A= pu, =3.68E-04 [[49,1,9]] 1TA, MIM
$(Ep) # S(Eq), or f, # fy, or E,Eq €S P 1078 - —¥— iy, =1.35E-04 {[61,1,9]} Shor's, no MIM-—| A g/ —%— ppy; =3.34E-04 {[61,1,9]] 1TA, MIM
. . . v —— py, =2.95E-04 [[49,1,9]] Shor's, MIM |+ | " " —i— p,, =6.57E-04 [[49,1,9]] 1TA, v > 1, MIM
Under a noise model that has 1 and 2 qubit depolarizing channel after 1 and ¥ pun 25904 [[6L.L]] Shor's, MIM 5| 47 —%— py, —5.89E-04 [[61.1.0]) 1TA, 7 > 1, MIM
2 qubit gates, using only 1 flag qubit and a 1 ancilla qubit (per stabilizer b —— ——————1 — ———
generator if needed) and Shor's repeated measurement protocol we founda R 10 Two-tailed adaptive time decoders - Maxwell's demon decoders
CNOT schedule for the [[49, 1, 9]] code that yields distinguishable full ;
syndromes for each possible fault combination up to 4 faults — thus the
protocol preserves the code distance.
<
NOISE MODEL 2 '
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» Depolarizing error model parametrized by a single physical error parameter p o N
o -
« after each 1-qubit (2-qubit) gate 1-qubit (2-qubit) depolarizing channel of strength p, which S
leaves the state unchanged with probability 7-p, and with probability p/3 (p/15) applies one of the =
. . . . n '/ o0
possible 1-qubit (2-qubit) Pauli operators X,Z, Y({I, X, Z, Y}® >\{I®I}). § 7 /4 A
’ 9 - Jbin 49:31E-04 [[49,1,9]] 2TA, MIM —+—" P LA1E-03 [[49,1,9]] M1TA
» With probability ~ flip the result of a measurement operation and after a reset operation flip the V' pin £8.21E-04 [[61,1,9]] 2TA, MIM —%~" pf #1.12E-03 [[61,1,9]] M1TA
state to the orthogonal state s pin, =1.30E-03 [[49,1,9]] 2TA XZ, MIM gl =2.39E-03 [[49,1,9]] M1TA XZ
107 - o P =115E-03-[[61,1.9]] 2TA XZ, MIM . ,.o'Zth —1.88E-03 [[61,1,9]] M1TA XZ
 Note, that exploring and combating the effect of idling noise is in progress and will be part of the /7 A= pu =1.71E-03 [[49,1,9]] 2TA ZX, MIM AT # pyy, =2.65E-03 [[49,1,9]] M1TA ZX
preprint [1]. Distinguishability is not impacted by lack of idling errors. AT =1 38E03 [[61,1,9]] 2TA ZX, MIM ] e pn =2.06E-03 [[61,1,9]] M1TA ZX
s 1078 1073 S0 1074 1073
e Physical Error Rate (p) Physical Error Rate (p)

SPACE DECODING AND DISTANCE VERIFICATION Space decoder Time decoder [[49,1,9]] [[61,1,9]] Maxwell [[49,1,9]] Maxell [[61,1,9]]
No MIM Shor’s -

We use a general lookup table-based distance verification and decoder for an [[n, k, d]] stabilizer code MIM Shor’s 2.95E-04 2.59E-04
under depolarizing noise models. MIM 1TA 3.68E-04 3.34E-04
. . . . MIM 1TA,y>1 | 6.57E-04 5.89E-04 1.41E-03 1.12E-03
Ingredient 1: Compact lookup table: maps a syndrome for Pauli operators of weight up to t to its Ty ZTX o310 T
logical class. All Pauli operator P € P, can be decomposed as pure errors (E), a stabilizer (S) and a VIV STA X2 e 1CE.03 P EIE L CERE

logical operator L € P, P = ESL. We fix E to be the Paulis that flip exactly one syndrome bit (the right MIM >TAZX | 1.71E-03  1.34E-03 5 65E-03 5 06E-03
inverse of H). The logical class is the parity of the Pauli frame after the application of the recovery
operators on each single qubit error. We build 2[” possible combinations up to t faults of the columns
of the logicalized parity check matrix H|z— = {7 and verify that they are all unique (~ calculating the
spark of the matrix). E.g., for the [[7,1,3]] code:

Methods: Direct sampling using Cirg[7], Stim/Sinter[8], Python/C++, Slurm. Number of samples per
datapoint vary from a a minimum of 10°> to a maximum of 10°. Code and data will be open sourced as

(00 1) recoveries (000 0 1 1 1 1) part of [1.]' . : . . L
oo 010 H 0110011 Conclusions: Both space and time decoding optimizations can have a significant effect. [[49, 1,9]]
H_<<1) L1001 1),1&11_ 100 L=JH 'HoI) VLV = (1) 8 1 8 1 (1’ (1) code slightly outperforms the [[61,1,9]] near threshold. We are not saturating the upper bounds but
00 0 / \ T 1 1 1 1 1 1 our time decoders are roughly within the same order of magnitude.
\0 0 O) J=(11...1) for parity 1 qubit errors

Ingredient 2: The effective code maps a fault combination to a full syndrome analogously to how the
error correcting code maps a combination of single-qubit errors to generator bits. REFERENCES
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combinations with syndromes that are not in the lookup table.
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